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ITEM CHARACTERISTIC CURVE _PARAMETERS:
EFECTS OF SAMPLE SIZE ON LINEAR EQUATING

I. INTRODUCTION
I

. ,

The .application of the 'technology of computer - driven adaptive' testing requires the
developMent of large banks of .. test items. Each bank may. contain 250 to 400 items,'and all must
measure the same: ability on the same metric or scale. It is unreasonable and impracticable- to

i assemble a single group of 2,000 subjects for 250 to 400 minutes to try all the items; therefore, ,

a method for :linkini together subsets of items administered to varying groups must be

investOated. Item Characteristic 'Curve (ICC) theory offers a uhique method of linking subsets of
test items due to the invariance property of the ICC paiameters.. This inVariance property rests on
the two major theoretical assumptions of latent-trait theory: (a) uniclimensionality' and (b) local
independence. Unidimensionality means that only a single ability is bsiag theastrred and is assumed
to be the property of an item pool, even when .anembled into subseTs. Local independence means.
that the subjects' responses to an 'item are independent of the responses to another item. More
simply put, this means that the item nponse is a function of ability and no olher In

effect, this is a restatement of .the unidimensionality assuniption. If an item pool is

unidimeasional, then any shift in score metric that is due to 'a linear transformation may be
.. corrected or adjusted by application of the proper complementary, linear transformition. This is

OW is meant by the idea that latent-tra* t parameters are invariant to a linear transformation, aridk

itfis this theoretical property that allows tem pools to be linIced and transformed to a comtnon
metric. In previous reseach efforts, Rein pools have been linked via the methOd of linear equating
(dee Lord, 1977; Ree, 1937; Syinpson & Ree, in press) with apprent succets. To datto there has
been little reseaech on the efficacy of these linking procedures and the effects of, errors in, ICC

.. parameter estimation on their (linearly) transformed values. ,

ICC Parameters

The three parameter logistic model of Birnbaum (Lord it Novick, 1968) is the most

frequently used for relating item responses to subjects'. *14, The three parameters, a, b, and c,
are item discrimination, Item difficulty (or. location), and probability of chance success (or lower
asymptote), respectively.

The curve, described by these parameters takes the shape of an ogive (cumulative frequency)
or' an "s" with the upper asymptote approaching', a probability of 1.0 and usually a lower
asymptote of *a probability greater. than 0,0. The ogive describes the probability of obtaining a
correct answer to an item as a mondtonic increasing function of ability.

X
The item discrimination parameter, a, is a function of the slope of the' ICC and generally

rianges from .5 to about 2.5. The value of a equal to about 1.0 is typical of niany test items,
(vhile values below .5 are insufficiently discriminating for most testing purposes, and a values
above 2.O are infreqUently found.

41/4The tem difficulty parameter, b describes, the point of inflection of the ICC and is usually
scaled between 2.5 And +2.5, aliheuethe metric is arbitrary.

The item guessing paiaméter, c, is the lower asymptote of . the ICC and is generally
conceived as -the probability of seleeting the correct item-option by chance alone. Most test items
have c aximeteri greater than 0.0 and less than or equal to .30.

Figu e 1 shows three ICCs. The horizontal axis is scaled in units of ability U and the
vertical ax is the probability of answering the item correctly. The solid curved line shows an ICC

^,
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Figure 1. Item charaiteristic curves.

for an item of average difficulty with ac ceptable discrimination and the lower asymptote
appropriate for a five4tet'n multiple-choice item. The dasird line shows . an item of identicl
difficulty, c. value of .28, but with a lower a value. Note how the slope of the curve is less
steep. The third curve, dot-dash line, shows an item with a iLvaltie of .30, an a parameter of 1.0,
and the b parameter equal to 1.0. As the b parameter /changes, the location of the inflection
point of the. curve 4s displaced along the horizontal axW. .

Equation 1 presentS the mathematical function descçibing .the curve.

p(0.1
(-1.7a:" (0 6)) 1ci + (1 ci) (1 e ' .)

6
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Previous researdh (Ree, 1978) indicates that the ICC parameters may 'be estimated With some

reasonable degree of accuracy, providing a sufficient sample of exarninees with an appropriate

distribution of ability, 0 is available:

Linking Paradigms

Two fundamental linking procedures may 'be defined and are known' as the Anchor Items
Method (OM) and the AnChor, Subjects Method (ASM). In AIM, every subset of items is

adminittered to a 4ifferent sample or-subjects, but embedded into the group of items to °be
ihalyzed is a' commam (or anchor) set of items. During analysis, the anchor items are identified,
and the following linear transformation- is applied to the resultant ICC parameters:

4r

t sb
2

(sb sb2t)
(2)

Where bt is the item location parameter transformed to the desired scale and sbt and sb2 are
standard deviations of the desired scale and opserved scale respectively. A similar procedure. for .tke

a parameter is defined by

sb
2at = a

2 sbt
(3)

Where a, is the item discrimination parameter trAnsformed to the desired scale, a2 is the observed a
parameter, and sbt -and sb2 are as in equation (2). Because the c parameter is measured on the
probability axis, it does not change and no transformation need be applied.

The ASM requires thay same group of subjects be available to take each subsel of items.

It is extremely unlikely that e same 2,000 subjects- could be,psembled to take ,iteins over a
long period of time as would be required to place tests on tfK same metric from year to year.
For this reason, the ASM method seems less likely to find long-term practical application. Because
of its potential for use, the AIM procedure is the subject of the 'present study.

.a. .,

it. *MOD

In order to have a known standard for reference, a simulation study was run using two
.

groups of subjects, a single set of 20 anchor items and two differing l'oups of 60 experimental,.
of non-anchor, items. These tWo groups of items were assembled into two, tests designated TI and
12. Both groups of simulated s jects were specified to have about the same normal distribution
of 0. Table I shows the mean, tandard deviation,, minimum and maximum of 0 for the groups SI
and S2. These two groups rep esent what might be .expected -if subjects for experimental testing
were picked from some larger pool, such as candidates for military enlistment for example.
Response vectors for these subjects were generated on the two tests.

4 .



_Table 1. Mean, Stantlard
Mblimt1111 and Maximum Of

for Groups SI, and S2

Para meter

RO

ao

Minimuni
-,

Maximum

Orou pa:

SI i2
0

0.0145' , 0.0250
0:9976 1.0,045

2.6000 2.6000
2%000 2.6000 '.

Generation of ItemResponses

In order to;generate a vector of iteth responses. for each "subject" the 0 values were used in
equation (1) to compute the likelihood of "passing" each item.

Because Equation I yields a number P(0)i -such that 0.0 < P(0)i < I.d, a number Xj is
drawn from a uniform (rectangular) distribution xanging frOm 0.0 to 1.0 and compared. to P(8)j. If
X 'is larger than P(0)., then an incorrect response is specified for the item., othetwise, a correct.
response is speCifiecl flor the item. Thus, a "Snbject" with P(0)j =' .9(2 gets the iteM correct 9 in.
10 times, and a vector .of item responses is deveroped for each "subject" in each data set. These
response vectors are then used to itiv'estigite the AIM linking procedures. .

Table 2 shows the distribution of ICC parameters for the 80 items'for Test 1 (TO and Test
2 (12), while Table 3 shows the JCC parameters for the 20 anchor items which are common' to
both tests.

Subjects *from Group I were administered only the items in Test 1 , and subjects from ,Group
2. only the items in Test 2. In order, to study the effects or sample size, the ICC parameters were
estimated on fOur samples drawn with' replaCement as.. follows: 250; 500; 000; and 2,000. The
ICC parameters were estimated on .these four sample sizes for both groups. Anchor -ICC parameter
values from the four samples administered Test I serve as the input values for the anchor item
parameters to .the second teit. This permitted the four .sizes of Calibration' sample- (250: 500;
1,000; 2,000) to be varied and tried out with the foui samples used to estimate the 2nchor item
ICC parameters. . .

G4

Table Z Means and Standard Deiiations
of the Generated Item Parameters for Test I (TI)

awl Test 2 (T2)

Parameter

Tat
T1 T2

1.0564 1.0452

0.2793 0.2394

0.0847

0.8442 0.8577

0.1878 0.2017

0.0542 0.0474

S.
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'able3. ParanVeriof the:20
Anchor ma Conimon to' Both Tests ,

Number
.8.

.ICC Parameter

.1

2
3

.8000

.8000
'1.0000'1

f

.5906
4500

. : 1.00.00'
1.100Q

, .2000
:41-4;1000 ,

1.2006 ,J.45,90

9 1.3000 jOoo
ro 14000 -.1500

1 .4000 -.1500,

l3000, 3000.

1.2000. .45 y

14 1.2000

16

18

.19

20

Mean

s p

...

;Ow

a

.1000

.1 sbo

7- .

.

.2000'
:2000
.2200

.

. e- .
2090
2000

..2200

`,..2000
.2200

.7500 ' :2200
-9000 .200t)

1.0506 :zsoo
.2500 . .2'500

1.0000
1.0000.°

, .8000
.8Ci00 '
.8000

1.0600

.2113

1 .3506, 7.2V0
.2oo

-r

,1:5000

.0040

9549 ..045i

I'

ill. RESULTS
.

,

Table-4' shows the intercorrelations beiween ihe knoWn- item parameters and the esfimited

atheters. ,,As past reOrch- inditates (Urry,, 1976), the correlations all increase with increasing

mPle size: The correlations in Test 1 for b and estimates of b part high .at .952 and increase

o an exceptionally, high 992. Correlations for a ii4j estiMates Of a begin moderately at,' .666 and

climb to .869;btit ,the correlations of c' and 'estinat4d C increase from onlY .031 to .115, In Test

2, much the sanie pattern is obServed except that he correfation 'of c ;and estiMated c increases .

from .164 to .315 as 'sample size 'increases.
.

. -

o'u ,. Because Correlations are, insensitive to constant differences. as ', might be foimd. if ICC.,

parameters. Ire overestimated pr underestimated "by r a constant amount, 'summed= absolute deviates

of the tstimated parameters from the known parameters were 'cPropitted for each parameter in '-.. ,. .

.

each 'sample 'size, Table 5 presents the suMined absolute deviations (or suMmed" errors) for. both,. ..

tests with the four sample sizes. Figure, 2 displays this graphically. There is.: a large 'drop in

summed error Alen the_ a parameter is estimated :on progressively larger samples of subjects up' to

'. -and inchiding the:- difference betiveen 1,000 and 500 subjects. Between 1,000, and, 2,000 subjects,

' the difference in stimmed lerror is Smaller. The relationship between error and sample size for -the .

11 parameter is more nearli:, -constant.. That' is,--. The. 'line on the figure for estimates of b is ,generally

'straight:.,,Which, means error lends to be reduced in direct . proiortion\ to the number of subjects. .

The almost: flat' line ;for the. c parameter indicates. that 'Virtually no reduction of error is occurring
. it , ,,, .

, , . - ,
,
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Table 4. Intercotreltions beiween Known
atvl Estimated ICC Parameters for Both

Groups with Varying Sample Sizes

4

Parameter

v'

N Test I,

1

250 .666

500 .671

1,000 .831

2,000 .869

250 -.952
4

500 .964

1,000 .980 .

2,000 .992
.

250 . .031

500 .035

1 I -.012
2,000 .1.15

_

Test 2

.512
).725!
.813
.886

.929

.962
.979
.987 iJ
.331
.315

Table 5. Summed Absolute Deviations (EIErrori) and Average Absolute

Deviations (lErrorl) for the Three ICC Parameters,
, for the Two Tests

6

,

Parameter

Test I Test 2

ElErrorl lErrorl ElErrerl 'Error)

a . 250 e 30.6450 .3831 30.5290 3816
a 1500 22.8090 .2851 20.6910 .2586

a 1,000 15.7490 .1969 1.6.8910 .2111
-

a ,2,000 f 15.5980 .1950 15.1390. . ,1892/
.

....
b 250 23.5050 . .2938 20.8470 .2604

,. b 500 19.8600 .2483 6.6070 . .2076

b 1,000 12.6090 .2211 3.8050 ,, .1726

, b . 2,000 1.7350 J592 1,5130 .1439

c 250 7,7360 ',0967 7.2350 .0904

c 500 73600 .0920 7.5120 .0939

c 1,000 6.9080 .0864 1.3180 .0915

c 2,000 6.4400 .0805 6.8640 .0858

I.

, 1 2

4
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Figure 2. Error in Estimation of ICC Piranneter.
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de,

Wlth increasing ,srple size 'for that paramiter. The avvage, abPI deviation fof c parameter
is almost one-tgii'd of the entire, ,r,ange of the 'Parameter as the parameter is generally estimated
between ..00 :and .30. Howet, past research. (Ree, 1979)...indicav that, eVen for low ability
subjects, the effects of errors in the estimation of the c paraMeteraie small.

d I 4

, Summed deviations .of kneiiin ICC parameters from he eqUated value of the .ICC Paratileters
were computed, for the a and b parameters for the 16 c binations of calibration Sample ..size and
equating sample size. Table 6' sho*s the summed deviafions and 'the per item4 deViation for: both .
parameters for the 16 combinations. The equated a arameter shows large summed deviations--
wfienever the saMple has been limited to 2$0 subjec whether in the calibration or equating
sample': The lowest error rates for the a parameter occur When the anchor 'item values 'have been
estimated on 2,000...subjects. The effeets, of the size of the .calibration` sample are not so clear-cut..
When 2000, subjects are used to estimate the anchor itlern Acc parameters, the magnitude of the
error is approximately the same for, all calibration- sakgsizes .excApt 250. With increasing
calibration sample :size', the error rate increases by some smA amount As indicated by the average
(Pet item) err,or. This is an unexpeeted result .'and an explanation 194y be found in the

relationship cbetween the sets of .estimated 'a parameters. If the estimated :a parameters were 'all
estiniates of the saMe value and if the test scale were unidimensional, a basic assumption of the
theory; then the estimated a parameters should be linear transformithins of One another and
should be correlated 1.0, ts correlations are invariant to a linear transforthation. This was not
found to be 'the case, and Table.7 shows the intercorrelation of the; eitimated a- parameters. Only
the correlation between the 'estimate of a calculated on 1,000 subjects add the estiniate of a
calculated in 2;000 subjects approaches this relationship. This lack of linearity may "be, due to the
assumption of normality and tO the resealing used in the calibration prOcedure, and these May
interact in such a way as to prodUce the anomalous results. Table 8 .stovis.the intercorrelation of
estimated b parameters: 'All exceed 900, and the summed. d'e'viis Also show a' steady decrease
s sample siie increases for the b parameter; indicating V777Tually linear transformation of

I I



Table 6. Summed Absolute Deviations (ZiErrorl) and Averap Absolute Deviations

(lErrorl) for the sand b Parameters for Various
Equating and Calibrating Sample Sizes

Number of Subjects

.Paramitv

Calibration Equatint ElErrorl ElErrorllErrorl lErrorl

250

-5004'
1000
2000

6250

. 5.00
1060

2000

250
590

1000

2000

250 .

500
1000

2000

2000
2000
2000
2000

. 1000

1000
1000

1000

,
500
500
500
500

'.1 ' 250
250
250
250

341263
15..1282

15.9871

16.5958

3$.3625
77 .67A8

19.5867

21.0321

48.6112
24.5582
28.8291

-31.2094

44.3122
21.5767
24.4389
27.0242

,

2

.4278
..1891

.1998

.2074

..2279105

.2448

.2629

.60764

.3070

. .3604
:3901

.5539

... :2697
.3117

.3378

,

'

.

0

,

.

23.3679
21.9342
16.3660
4.4579

2i.6440
24.3413
19.1156
16.8828

25.4374
22.8994
18.1871

15.8128

.2011

.24.4160
19..4843

11'.3255

.2921

.2742

.
.2046

, .1682

.3205

.30238493

2110

.3180

.2862

.2273

.1979

.3275

.3052
.2436
.2166

Table 7. Intercorrelations, Means,
and Standard Deviation of the Estimated

a Parameters' for Test 2

2

1 1.000
2 .757 1.000

3 169e1 .860 1 .000

4 .595 .803 ".926 1.000

Mean 1.3525 1.2539 1.2348 1.2268

SD .4843 .3347 .3254 .3061

'Variables are for the four sample sizes; 250; 500; 1,0.00;
2,000.
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Dble 8. IntereorrelitiOns; Means, and
Standard Deviation of the Estimated

b Parameters° for Test 2 1.

1/ 2

2
1.00

.952 1 Ak

3 .940 .978 1.00
4 935 .969 .986 1.00

Mean .0563 .0591 ..0735 .0559

SD .8558 .8384 .8700 8727/

aVariii7tes ire for the four simple sizes: 250; 500; 10001,
.. 2,000.

/. ,
, , /

estimated b parameters fromaniPle to isample. However, with/
i
500 subjects in the eqUating

sample, a similar anomaly.. is observed which may also be due, to. normal assumptions alid to

reicaling, . .

L .' a N
i

.v. Lus.cuss...N .

.,
..,..

The results of the . study present new 'eviZlence. of the. critical intorelationship bikwee 'tem
. calibration and equating sarnpie sizes and the values. of parameters. ._.

,
i

Estimating and ,Equiting a _

For the 16 combinations .of calibration sarriple sizes and equatlng sample sizes identified in

Table 6, the least deviation .of estimated a from,its kno n 'value occurred with an equating

sample size of 2,000 and a calibration sample size 'of 500. As mentioned in The previous section,

although the least error, between the ,estimated and .known values was expected with a match of
2,000 equating and 2,000 calibrating sample sizes,'the eytok actually increased very slightly with
increasing, calibration sample sizes beyond 500. This idiserepancy apparently results frOm a

non-linear transformation with sample sizes of 250 and 5 but tends toward linearity with sample
sizes of 1,00Q and 2,000.

During equating procedures, a sample size > 00 shoOld be developed to ensure an

acceptable degree of confidence that the estimation f a does not significantly depart from its

"true" Value. In the sank light, estimatiori of a suffers considerably using equating sample sizes Of
less than 500 such that equating samples of 1,000 Or 2,000 are hi,glq desirab'le to minimize error
in estimating a.:

a
Esthnating and Equating h

Table 6 also shows the linear relationship between error and sample size for the b

parameter. The b parameter is best estiniated with calibration and equating samples of 2,000 each,
although a calibration sample size of 1,000. with equating sample siie of 500 can be tolerated
without an appreciable increase in error. With 1 combinations of calibration and equating sample
sizes, b is estimated quite well.
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Estimating airAl Eqating c

The flat line drawn in Figure 2, representing the data front Table 5, shows the estimation of
the c parameter to be nearly 'insensitive to increases in Firnple size. As sample size increases from
250 to 2,000 subjects, the error decreases but,' only -very sjightly. With the c defined as the lower
asymptote of the ICC and representing the probability of extiemely low ability examinees
correctly ansikering an item, the inability to estimate c with precision be disturbing.
However, it has been pointed. out (Lord, 1975) that if a (0 - b) 2, then e probability of a *
correct response is c. Therefore, if there are a large number of subjects with ability 0 s6 that 0
< (2Ia T b), c can be accurately estimated. If this requirement is not met, c 'will be poorly. estimated.

A stable and accurate estimate of 'the a and b parameters requires large numbers of subjects
over a broad range of 'ability. The estimation of c requires large numbers of subjects at very low
ability levels. This, holds for both equating and calibrating iamples; therefbre, it is necessary to
administei test items, whether to be calibrated or equated, to the largest samples available.

REFERENCES

Lord, F.M. Evaluation with artificial data of a pipcedure for estlmating adlity and item characteristic nem;
parameters. ETS-RB-75-33. Princeton, NJ: Educational Service, 1975: , ,

Lord, F.M. Practical applicatiOns of item characteristic curve theory. Journal-Of:Educational Measurements
1977, 14, 117-138.

Lord, F.M., & Novick, Ni.g. Statistical theories acf_mentaltesneoril Readtng;-14.4: Addison-Wesley, 1968.
, .

Ree, Adaptive teStingtKan owel'aPer delivered at the Annual Meeting O-f -the Military Testing
Association, San Antonio',fexas, 1977.

Ree, MJ. Estimating item charaCteristic curves. AFHRL-TR-78-68, AD-A064 739. Brooks AFB, TX:
Personnel Research Division, KlF Force Human Resources Laboratory,.November 1978. .

Ree, MJ. 71e effects of errors in the estimatiop of item characteristic carve parameters. Paper piesented at
Ithe Annual Meeting of the Military Testing Association, San DiegolCalifornia,1979. :

Sympson; B., & Ree, MI A validity comparison of adaptive testing in a militwy techlical training
envirgnment. Brooks AFB, TX: Air Force Human Resources Laboratory; Manp9wer."and Pesonnel
ReSearch Division; in press? r

,

Urry;.V. A five-year quest: Is computerized adaptive testing feasible? PrnCeedings of the Arst Conference
'on Computerized Adaptive Teiting, Washington D.C.: Government Printing Office,Aarch 1976.

r.


